Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
BMC Public Health ; 23(1): 993, 2023 05 29.
Article in English | MEDLINE | ID: covidwho-20238820

ABSTRACT

BACKGROUND: The COVID-19 pandemic increases the risk of psychological problems, especially for the infected population. Sleep disturbance and feelings of defeat and entrapment are well-documented risk factors of anxiety symptoms. Exploring the psychological mechanism of the development of anxiety symptoms is essential for effective prevention. This study aimed to examine the mediating effects of entrapment and defeat in the association between sleep disturbance and anxiety symptoms among asymptomatic COVID-19 carriers in Shanghai, China. METHODS: A cross-sectional study was conducted from March to April, 2022. Participants were 1,283 asymptomatic COVID-19 carriers enrolled from the Ruijin Jiahe Fangcang Shelter Hospital, Shanghai (59.6% male; mean age = 39.6 years). Questionnaire measures of sleep disturbance, entrapment, defeat, anxiety symptoms, and background characteristics were obtained. A mediation model was constructed to test the mediating effects of entrapment and defeat in the association between sleep disturbance and anxiety symptoms. RESULTS: The prevalence rates of sleep disturbance and anxiety symptoms were 34.3% and 18.8%. Sleep disturbance was positively associated with anxiety symptoms (OR [95%CI] = 5.013 [3.721-6.753]). The relationship between sleep disturbance and anxiety symptoms (total effect: Std. Estimate = 0.509) was partially mediated by entrapment (indirect effect: Std. Estimate = 0.129) and defeat (indirect effect: Std. Estimate = 0.126). The mediating effect of entrapment and defeat accounted for 50.3% of the association between sleep disturbance and anxiety symptoms. CONCLUSION: Sleep disturbance and anxiety symptoms were prevalent among asymptomatic COVID-19 carriers. Entrapment and defeat mediate the association between sleep disturbance and anxiety symptoms. More attention is needed to monitoring sleep conditions and feelings of defeat and entrapment to reduce the risk of anxiety.


Subject(s)
COVID-19 , Sexually Transmitted Diseases , Humans , Male , Adult , Female , Depression/epidemiology , Cross-Sectional Studies , Hospitals, Special , Pandemics , COVID-19/epidemiology , China/epidemiology , Mobile Health Units , Anxiety/epidemiology , Sleep , Sexually Transmitted Diseases/epidemiology
2.
Clin Exp Med ; 2023 Mar 20.
Article in English | MEDLINE | ID: covidwho-2286178

ABSTRACT

This study aimed to uncover the current major topics regarding COVID-19 vaccine, and systematically evaluate the development trends for future research. The top 100 most cited original articles on COVID-19 vaccine from January 2020 to October 2022 were identified from Web of Science Core Collection database. CiteSpace (v6.1.R3) was adopted for bibliometric analysis with statistical and visual analysis. The number of citations ranged from 206 to 5881, with a median of 349.5. The USA (n = 56), England (n = 33), and China (n = 16) ranked the top three countries/regions in terms of the number of publications. Harvard Medical School (centrality = 0.71), Boston Children's Hospital (centrality = 0.67), and Public Health England (centrality = 0.57) were the top three institutions leading the way on COVID-19 vaccine research. The New England of medicine journal dominated with 22 articles in the 32 high-quality journals. The three most frequent keywords were immunization (centrality = 0.25), influenza vaccination (centrality = 0.21), and coronavirus (centrality = 0.18). Cluster analysis of keywords showed that the top four categories were protection efficacy, vaccine hesitancy, spike protein, and second vaccine dose (Q value = 0.535, S value = 0.879). Cluster analysis of cited references showed that top eight largest categories were Cov-2 variant, clinical trial, large integrated health system, COV-2 rhesus macaque, mRNA vaccine, vaccination intent, phase II study, and Cov-2 omicron variant (Q value = 0.672, S value = 0.794). The research on COVID-19 vaccine is currently the hottest topic in academic community. At present, COVID-19 vaccines researches have focused on vaccine efficacy, vaccine hesitancy, and the efficacy of current vaccines on omicron variants. However, how to increase vaccine uptake, focus on mutations in the spike protein, evaluate of the efficacy of booster vaccine, and how effective new vaccines under pre- and clinical development against omicron will be spotlight in the future.

3.
Expert Rev Vaccines ; 21(12): 1883-1893, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2097133

ABSTRACT

BACKGROUND: The immune persistence of neutralizing antibodies elicited by BBIBP-CorV vaccines on day 0-14, 0-21 and 0-28 schedule, and the immunogenicity and safety of a homologous booster dose after different priming vaccination regimens is scarcely reported. METHODS: : Responders (GMT≥16) at day 28, after priming with the two-dose vaccine, were followed up at 3, 6, and 10 months. Eligible participants received a homologous booster dose at month 10 and were followed-up 28 days post-booster. RESULTS: The GMT of neutralizing antibodies in 0-28d-10 m and 0-21d-10 m group were significantly higher than 0-14d-10 m group from month 3 (71.6 & 64.2 vs 46.4, p < 0.001) to month 10 (32.4 & 28.8 vs 20.3, p < 0.001) after the second dose. On day 28 post-booster, a remarkable rebound in neutralizing antibodies (246.2, 277.5, and 288.6, respectively) was observed in the three groups. All adverse reactions were mild after booster injection. CONCLUSIONS: The priming two-dose BBIBP-CorV vaccine with 0-28 days and 0-21 days schedule could lead to a longer persistence of neutralizing antibody than the 0-14 days schedule. Regardless of the priming vaccination regimens, a homologous booster dose led to a strong rebound in neutralizing antibodies and might persist for at least 18 months.


Subject(s)
Antibodies, Neutralizing , Vaccination , Humans , Immunization, Secondary , Antibodies, Viral , Immunogenicity, Vaccine
4.
Infect Dis Poverty ; 10(1): 138, 2021 Dec 22.
Article in English | MEDLINE | ID: covidwho-1581999

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (COVID-19) have a substantial burden on health-care systems around the world. This is a randomized parallel controlled trial for assessment of the immunogenicity and safety of an inactivated SARS-CoV-2 vaccine, aiming to determine an appropriate vaccination interval of the vaccine for high-risk occupational population. METHODS: In an ongoing randomized, parallel, controlled phase IV trial between January and May 2021 in Taiyuan City, Shanxi Province, China, we randomly assigned the airport ground staff and public security officers aged 18 to 59 years to receive two doses of inactivated SARS-CoV-2 vaccine at 14 days, 21 days, or 28 days. The serum neutralizing antibody to live SARS-CoV-2 was performed at baseline and 28 days after immunization. Long-term data are being collected. The primary immunogenicity endpoints were neutralization antibody seroconversion and geometric mean titer (GMT) at 28 days after the second dose. Analysis of variance (ANOVA), chi-square, and logistic regression analysis were used for data analysis. RESULTS: A total of 809 participants underwent randomization and received two doses of injections: 270, 270, 269 in the 0-14, 0-21, and 0-28 vaccination group, respectively. By day 28 after the second injection, SARS-CoV-2 neutralizing antibody of GMT was 98.4 (95% CI: 88.4-108.4) in the 0-14 group, which was significantly lower compared with 134.4 (95% CI: 123.1-145.7) in the 0-21 group (P < 0.001 vs 0-14 group) and 145.5 (95% CI: 131.3-159.6) in the 0-28 group (P < 0.001 vs 0-14 group), resulting in the seroconversion rates to neutralizing antibodies (GMT ≥ 16) of 100.0% for all three groups, respectively. The intention-to-treat (ITT) analysis yielded similar results. All reported adverse reactions were mild. CONCLUSIONS: Both a two-dose of inactivated SARS-CoV-2 vaccine at 0-21 days and 0-28 days regimens significantly improved SARS-CoV-2 neutralizing antibody level compared to the 0-14 days regimen in high-risk occupational population, with seroconversion rates of 100.0%. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2100041705, ChiCTR2100041706. Registered 1 January 2021, www.chictr.org.cn .


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , Double-Blind Method , Humans , SARS-CoV-2
5.
Acta Pharm Sin B ; 11(1): 222-236, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-871726

ABSTRACT

Lianhuaqingwen (LHQW) capsule, a herb medicine product, has been clinically proved to be effective in coronavirus disease 2019 (COVID-19) pneumonia treatment. However, human exposure to LHQW components and their pharmacological effects remain largely unknown. Hence, this study aimed to determine human exposure to LHQW components and their anti-COVID-19 pharmacological activities. Analysis of LHQW component profiles in human plasma and urine after repeated therapeutic dosing was conducted using a combination of HRMS and an untargeted data-mining approach, leading to detection of 132 LHQW prototype and metabolite components, which were absorbed via the gastrointestinal tract and formed via biotransformation in human, respectively. Together with data from screening by comprehensive 2D angiotensin-converting enzyme 2 (ACE2) biochromatography, 8 components in LHQW that were exposed to human and had potential ACE2 targeting ability were identified for further pharmacodynamic evaluation. Results show that rhein, forsythoside A, forsythoside I, neochlorogenic acid and its isomers exhibited high inhibitory effect on ACE2. For the first time, this study provides chemical and biochemical evidence for exploring molecular mechanisms of therapeutic effects of LHQW capsule for the treatment of COVID-19 patients based on the components exposed to human. It also demonstrates the utility of the human exposure-based approach to identify pharmaceutically active components in Chinese herb medicines.

6.
Front Med ; 14(5): 613-622, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-401814

ABSTRACT

The coronavirus disease 2019 (COVID-19) has become a life-threatening pandemic. The epidemic trends in different countries vary considerably due to different policy-making and resources mobilization. We calculated basic reproduction number (R0) and the time-varying estimate of the effective reproductive number (Rt) of COVID-19 by using the maximum likelihood method and the sequential Bayesian method, respectively. European and North American countries possessed higher R0 and unsteady Rt fluctuations, whereas some heavily affected Asian countries showed relatively low R0 and declining Rt now. The numbers of patients in Africa and Latin America are still low, but the potential risk of huge outbreaks cannot be ignored. Three scenarios were then simulated, generating distinct outcomes by using SEIR (susceptible, exposed, infectious, and removed) model. First, evidence-based prompt responses yield lower transmission rate followed by decreasing Rt. Second, implementation of effective control policies at a relatively late stage, in spite of huge casualties at early phase, can still achieve containment and mitigation. Third, wisely taking advantage of the time-window for developing countries in Africa and Latin America to adopt adequate measures can save more people's life. Our mathematical modeling provides evidence for international communities to develop sound design of containment and mitigation policies for COVID-19.


Subject(s)
Bayes Theorem , Communicable Disease Control , Coronavirus Infections , Disease Transmission, Infectious , Likelihood Functions , Pandemics , Pneumonia, Viral , Basic Reproduction Number/statistics & numerical data , Betacoronavirus , COVID-19 , Communicable Disease Control/methods , Communicable Disease Control/statistics & numerical data , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Disease Transmission, Infectious/prevention & control , Disease Transmission, Infectious/statistics & numerical data , Forecasting/methods , Global Health/statistics & numerical data , Global Health/trends , Humans , Models, Theoretical , Pandemics/prevention & control , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Risk Adjustment , SARS-CoV-2
7.
Front Med ; 14(2): 199-209, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-51748

ABSTRACT

The outbreak of the coronavirus disease 2019 was first reported in Wuhan in December 2019 and gradually spread to other areas in China. After implementation of prevention and control measures, the estimation of the epidemic trend is needed. A phase- and region-adjusted SEIR model was applied for modeling and predicting the number of cases in Wuhan, Hubei Province and regions outside Hubei Province in China. The estimated number of infections could reach its peak in late February 2020 in Wuhan and Hubei Province, which is 55 303-84 520 and 83 944-129 312, respectively, while the epidemic peaks in regions outside Hubei Province in China could appear on February 13, 2020 with the estimated 13 035-19 108 cases. According to the estimation, the outbreak would abate in March and April all over China. Current estimation provided evidence for planned work resumption under stringent prevention and control in China to further support the fight against the epidemic. Nevertheless, there is still possibility of the second outbreak brought by the work resumption and population migration, especially from Hubei Province and high intensity cities outside Hubei Province. Strict prevention and control measures still need to be considered in the regions with high intensity of epidemic and densely-populated cities.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Epidemics , Pneumonia, Viral/epidemiology , COVID-19 , China/epidemiology , Humans , Pandemics , SARS-CoV-2 , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL